Answer:
m∠G = 115 degrees
Explanation:
The sum of the angles in a triangle is 180 degrees.
In triangle GHI:
[tex]\begin{gathered} m\angle G+m\angle H+m\angle I=180\degree \\ \implies9x-2+3x-19+3x+6=180\degree \end{gathered}[/tex]First, solve for x:
[tex]\begin{gathered} 9x+3x+3x-2-19+6=180\degree \\ 15x-15=180\degree \\ 15x=180+15 \\ 15x=195 \\ x=\frac{195}{15} \\ x=13 \end{gathered}[/tex]Therefore, the measure of angle G is:
[tex]\begin{gathered} m\angle G=9x-2 \\ =9(13)-2 \\ =117-2 \\ m\angle G=115\degree \end{gathered}[/tex]The measure of angle G is 115 degrees.