Given:
Population =300000
Growth rate = 4.5 %.
time = 14 years.
consider the exponential growth equation.
[tex]y=a(1+r)^t[/tex]where a is the initial value and r=growth rate.
Let y be the number of population after t years.
Substitute a=300000, r=4.5/100. t-14 in exponential growth equation, we get
[tex]y=300000(1+\frac{4.5}{100})^{14}[/tex][tex]y=300000(\frac{100}{100}+\frac{4.5}{100})^{14}[/tex][tex]y=300000(\frac{104.5}{100})^{14}[/tex][tex]y=300000(1.045)^{14}[/tex][tex]y=555583.476485[/tex]Hence the population after 14 years is 555584 people.