ANSWER
[tex]223.88,232.11[/tex]EXPLANATION
Given;
[tex]\begin{gathered} n=82 \\ \bar{x}=228 \\ \sigma=19.0 \\ \end{gathered}[/tex]At 95% confidence level;
[tex]\begin{gathered} \propto=1-95\% \\ =1-0.95 \\ =0.05 \\ \frac{\propto}{2}=0.025 \\ Z_{\frac{\operatorname{\propto}}{2}}=Z_{0.025}=1.96 \\ \end{gathered}[/tex]At 95% confidence interval for true mean;
[tex]\begin{gathered} \bar{x}\pm Z_{\frac{\operatorname{\propto}}{2}}\frac{\sigma}{\sqrt{n}} \\ =228\operatorname{\pm}1.96\times\frac{19}{\sqrt{82}} \\ =228+1.96\times\frac{19}{\sqrt{82}}<228-1.96\times\frac{19}{\sqrt{82}} \\ =228-4.1124<228+4.1124 \\ =223.88<\mu<232.11 \end{gathered}[/tex]Therefore, 95% confidence interval for the true mean cholesterol content
(223.88,232.11)