From the graph, we can conclude:
[tex]\begin{gathered} b=y-intercept_{}\approx800 \\ m\approx\frac{900-800}{3-0}\approx33.33\approx40 \end{gathered}[/tex]So, the linear equation that best describes the given model is:
[tex]\hat{y}=40x+800[/tex]Therefore, for 2020 or x = 20:
[tex]\begin{gathered} \hat{y}(20)=40(20)+800 \\ \hat{y}(20)=1600 \end{gathered}[/tex]