In order to accumulate enough money for a down payment on a house, a couple deposits $513 per month into an account paying 6% compounded monthly. Ifpayments are made at the end of each period, how much money will be in the account in 3 years?Type the amount in the account: $(Round to the nearest dollar)

Respuesta :

Step 1- Write out the Future Value Ordinary Annuity formula:

[tex]FV=C\times\frac{(1+r)^n-1}{r}[/tex]

Where,

[tex]\begin{gathered} FV=\text{ the future value} \\ C=\text{monthly payments} \\ r=\text{ the interest rate} \\ n=\text{ the number of payments} \end{gathered}[/tex]

Step 2- Write out the given values and substitute them into the formula:

[tex]\begin{gathered} C=\$513,r=0.06, \\ n=3\times12=36 \end{gathered}[/tex]

Substituting the given values into the formula, we have:

[tex]FV=513\times\frac{(1+0.06)^{36}-1}{0.06}[/tex]

Hence,

[tex]FV=513\times\frac{(1.06)^{36}-1}{0.06}[/tex]

Hence, the future value is approximately:

[tex]FV\approx\$61109.00[/tex]

Hence, the amount in the account in 3 years is:

$61109.00