Step 1- Write out the Future Value Ordinary Annuity formula:
[tex]FV=C\times\frac{(1+r)^n-1}{r}[/tex]Where,
[tex]\begin{gathered} FV=\text{ the future value} \\ C=\text{monthly payments} \\ r=\text{ the interest rate} \\ n=\text{ the number of payments} \end{gathered}[/tex]Step 2- Write out the given values and substitute them into the formula:
[tex]\begin{gathered} C=\$513,r=0.06, \\ n=3\times12=36 \end{gathered}[/tex]Substituting the given values into the formula, we have:
[tex]FV=513\times\frac{(1+0.06)^{36}-1}{0.06}[/tex]Hence,
[tex]FV=513\times\frac{(1.06)^{36}-1}{0.06}[/tex]Hence, the future value is approximately:
[tex]FV\approx\$61109.00[/tex]Hence, the amount in the account in 3 years is:
$61109.00