Respuesta :

Note that the range in quadrants are :

[tex]\begin{gathered} Q1\colon\text{From}\quad 0\pi-0.5\pi \\ Q2\colon\text{From}\quad 0.5\pi-1.0\pi \\ Q3\colon\text{From}\quad 1.0\pi-1.5\pi \\ Q4\colon\text{From}\quad 1.5\pi-2\pi \end{gathered}[/tex]

From the problem,

[tex]\begin{gathered} \frac{3\pi}{4}=0.75\pi\Rightarrow Q2 \\ \frac{57\pi}{8}=7.125\pi \\ \text{Note that 1 whole circle is}\quad 2\pi \\ \text{Subtracting three}\quad 2\pi \\ 7.125\pi-3(2\pi)=1.125\pi \\ \text{and}\quad 1.125\pi\quad \text{ is at Q3} \\ \\ \frac{13\pi}{6}=2.167\pi \\ Subtract\quad 2\pi \\ 2.167\pi-2\pi=0.167\pi\Rightarrow Q1 \end{gathered}[/tex]

The first three answers are :

Q2, Q3 and Q1

For the second set, we have negative angles.

The range of negative angles will be the reversal of the positive angles.

This will be :

[tex]\begin{gathered} Q1\colon\text{From}\quad -1.5\pi\quad to\quad -2\pi \\ Q2\colon\text{From}\quad -1.0\pi\quad to\quad -1.5\pi \\ Q3\colon\text{From}\quad -0.5\pi\quad to\quad -1.0\pi \\ Q4\colon\text{From}\quad -0\pi\quad to\quad -0.5\pi \end{gathered}[/tex]

The following angles are :

[tex]\begin{gathered} -\frac{35\pi}{4}=-8.75\pi \\ \text{Add four}\quad 2\pi \\ -8.75+4(2\pi)=-0.75\pi \\ -0.75\pi\Rightarrow Q3 \\ \\ -\frac{5\pi}{6}=-0.83\pi\Rightarrow Q3 \\ \\ -\frac{5\pi}{11}=-0.45\pi\Rightarrow Q4 \end{gathered}[/tex]

The last three answers are :

Q3, Q3 and Q4

To summarized :

[tex]\begin{gathered} Q1\colon\frac{13\pi}{6} \\ Q2\colon\frac{3\pi}{4} \\ Q3\colon\frac{57\pi}{8},\quad -\frac{35\pi}{4},\quad -\frac{5\pi}{6} \\ Q4\colon-\frac{5\pi}{11} \end{gathered}[/tex]