The expression for the distance between two coordinates are express as :
[tex]\text{ Distance=}\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]Substitute the values of the coordinates:
[tex]\begin{gathered} (x_1,y_1)=(-1,-2) \\ (x_2,y_2)=(8,10) \end{gathered}[/tex][tex]\begin{gathered} \text{ Distance=}\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2} \\ \text{Distance}=\sqrt[]{(8-(-1))^2+(10-(-2))^2} \\ \text{Distance}=\sqrt[]{(8+1)^2+(10+2)^2} \\ \text{Distance}=\sqrt[]{9^2+12^2} \\ \text{Distance}=\sqrt[]{81+144} \\ \text{Distance}=\sqrt[]{225} \\ \text{Distance}=15\text{ unit} \end{gathered}[/tex]So, distance between two points (-1,-2) & (8,10) is 15
Answer : Distance between two points (-1,-2) & (8,10) is 15.