given the following trig equation, find the Exact value of the remaining 5 trig functionstan (theta) = 5/6 and cos theta < 0Start by drawing the triangle in standard position and use the Pythagorean theorem to find the remaining side. A. label the exact value of all 3 sides of the triangle drawn in the correct quadrantB. DETERMINE the EXACT value of the remaining 5 trig functions! (sin) (cos) (tan) (sec) (csc) (cot)

Respuesta :

tan (theta) = 5/6 and cos theta < 0

tan (theta) = 5/6 ==> theta = tan^-1(5/6) = 39.80557109

theta = 39.80557109

cos(theta) = cos(39.80557109) = 0.7682212796

It says that cos(theta) < 0, so the 39.80557109 degrees is in rality an angle of 90 + 39.80557109 = 120.80557109

sin (theta) = sin (120.80557109) = 0.858910105

cos(theta) = cos(120.80557109) = −0.5121263824

tan(theta) = tan(120.80557109) = −1.677144811

sec(theta) = sec(120.80557109) = −1.952643008

csc(theta) = csc(120.80557109) = 1.164266195

cot(theta) = cot(120.80557109) = −0.5962514348

Ver imagen QuirinoM146888