ANSWER:
[tex]X\text{ = }\begin{bmatrix}{12} & {-4} & {-2} \\ {-8} & {-13} & {8} \\ {8} & {15} & {18}\end{bmatrix}[/tex]EXPLANATION:
Given:
[tex]U\text{ = }\begin{bmatrix}{1} & {3} & {-5} \\ {2} & {14} & {11} \\ {-8} & {0} & {5}\end{bmatrix}\text{ V =}\begin{bmatrix}{13} & {1} & {-7} \\ {-6} & {1} & {9} \\ {0} & {15} & {23}\end{bmatrix}[/tex]Since U and V are Matrices with equal dimensions(3 x 3 matrix), and
X + U = V.
To solve for X, we have:
X = V - U
[tex]\begin{gathered} X\text{ = V - U} \\ X\text{ = }\begin{bmatrix}{13-1} & {-1-3} & {-7-(-5)} \\ {-6-2} & {1-14} & {19-11} \\ {0-(-8)} & {15-0} & {23-5}\end{bmatrix}=\text{ }\begin{bmatrix}{12} & {-4} & {-2} \\ {-8} & {-13} & {8} \\ {8} & {15} & {18}\end{bmatrix} \end{gathered}[/tex][tex]X\text{ = }\begin{bmatrix}{12} & {-4} & {-2} \\ {-8} & {-13} & {8} \\ {8} & {15} & {18}\end{bmatrix}[/tex]