For the scatter plot (part 1), you should have gotten something like this.
Notice that, in general, the greater the femur length is, the taller the person is. Therefore, the relation between those two quantities has the form
[tex]Y=mX+b,m>0[/tex]And, the correlation coefficient is
[tex]r=\frac{\sum ^{\square}_{\square}(x_i-\bar{x})(y_i-\bar{y})}{\sqrt[]{\sum ^{\square}_{\square}(x_i-\bar{x})^2\sum ^{\square}_{\square}(y_i-y)^2}}[/tex]In our case,
[tex]\begin{gathered} \bar{x}=\frac{1}{8}(49.9+48.6+46.3+45.8+44.3+43.6+39.7+38.9)=44.6375 \\ \bar{y}=\frac{1}{8}(177.5+174.6+165.6+164.7+165.3+164.6+155.8+156.7)=165.6 \end{gathered}[/tex]Therefore,
[tex]\begin{gathered} \sum ^{\square}_{}(x_i-\bar{x})(y_i-\bar{y}_{})=197.83 \\ \end{gathered}[/tex]and
[tex]\begin{gathered} \sum ^{\square}_{\square}(x_i-\bar{x})=105.9987 \\ \sum ^{\square}_{\square}(y_i-\bar{y})=399.76 \end{gathered}[/tex]Finally,
[tex]\Rightarrow r=\frac{197.83}{\sqrt[]{(105.9987)(399.76)}}=0.961[/tex]Thus, the correlation coefficient is equal to 0.961