Answer:
[tex]y=5\cdot(\frac{2}{5})^x[/tex]Explanation:
The exponential equation has the form
[tex]y=a\cdot b^x[/tex]Since it passes through the point (0, 5). Let's replace (x, y) by (0, 5) to find the value of a
[tex]\begin{gathered} 5=a\cdot b^0 \\ 5=a\cdot1 \\ 5=a \end{gathered}[/tex]Then, the equation is
[tex]y=5\cdot b^x[/tex]To find the value of b, we will use the point (1, 2), so replacing x = 1 and y = 2, we get:
[tex]\begin{gathered} 2=5\cdot b^1 \\ 2=5\cdot b \\ \frac{2}{5}=\frac{5\cdot b}{5} \\ \frac{2}{5}=b \end{gathered}[/tex]Then, the exponential equation is:
[tex]a=5\cdot(\frac{2}{5})^x[/tex]