The maximum possible efficiency of a reversible heat engine is 79.46% when the cold temperature is 224.0°C. What is the hot temperature in degrees Celsius?

Respuesta :

We have

A heat engine is 79.46%

TC= 224.0°C

TH=?

we have the next formula

[tex]\eta(\text{\%)}=1-\frac{T_C}{T_H}\times100[/tex]

we substitute the values

[tex].7946=1-\frac{224}{T_H}\times100[/tex]

then we isolate TH

[tex]\begin{gathered} .07946-1=-\frac{T_C}{T_H}\times1 \\ -0.2054=-\frac{T_C}{T_H}\times1 \\ \frac{T_C}{T_H}\times1=-0.2054 \\ \frac{T_C}{T_H}=\frac{0.2054}{1} \\ \frac{T_H}{T_C}=\frac{1}{0.2054} \\ T_H=4.8685\cdot224 \\ T_H=1090.55\text{ \degree{}C} \end{gathered}[/tex]

the hot temperature is 1090.55 degrees Celsius.