We have
A heat engine is 79.46%
TC= 224.0°C
TH=?
we have the next formula
[tex]\eta(\text{\%)}=1-\frac{T_C}{T_H}\times100[/tex]we substitute the values
[tex].7946=1-\frac{224}{T_H}\times100[/tex]then we isolate TH
[tex]\begin{gathered} .07946-1=-\frac{T_C}{T_H}\times1 \\ -0.2054=-\frac{T_C}{T_H}\times1 \\ \frac{T_C}{T_H}\times1=-0.2054 \\ \frac{T_C}{T_H}=\frac{0.2054}{1} \\ \frac{T_H}{T_C}=\frac{1}{0.2054} \\ T_H=4.8685\cdot224 \\ T_H=1090.55\text{ \degree{}C} \end{gathered}[/tex]the hot temperature is 1090.55 degrees Celsius.