The volume of a sphere is given by
[tex]V=\frac{4}{3}\pi r^3[/tex]where V denotes the volume and r the radius. In our case,
[tex]r=\frac{3}{2}in[/tex]Then, by substituting this value into the formula, we have
[tex]V=\frac{4}{3}\pi(\frac{3}{2})^3[/tex]which gives
[tex]\begin{gathered} V=\frac{4}{3}\pi\frac{3^3}{2^3} \\ V=4\pi\frac{3^2}{8} \\ V=\pi\frac{9}{2} \end{gathered}[/tex]By taking Pi as 3.14, we get
[tex]V=14.13in^3[/tex]So , by rounding to the nearest tenth, the answer is 14.1 cubic inches.