Answer:
c = 14
a = 7√3
Explanation:
To find the value of c, we will use the sin(30) because sin(30) is equal to the opposite side over the hypothenuse. So:
[tex]\sin (30)=\frac{7}{c}[/tex]Additionally, sin(30) is also equal to 0.5, so we can replace this value and solve for c:
[tex]\begin{gathered} 0.5=\frac{7}{c} \\ 0.5c=7 \\ c=\frac{7}{0.5} \\ c=14 \end{gathered}[/tex]Therefore, the length of the hypotenuse (c) is 7.
Now, we can calculate the length of the other leg using the Pythagorean theorem, where:
[tex]a=\sqrt[]{c^2-7^2}^{}[/tex]So, replacing the value of c by 14, we get:
[tex]\begin{gathered} a=\sqrt[]{14^2-7^2} \\ a=\sqrt[]{196-49} \\ a=\sqrt[]{147} \\ a=\sqrt[]{49\cdot3} \\ a=7\sqrt[]{3} \end{gathered}[/tex]Therefore, the length of the other leg (a) is 7√3