Respuesta :

ANSWER :

[tex]10k^{2}+10k+1-\frac{3}{5k-4}[/tex]

EXPLANATION :

From the problem, we have an expression :

[tex](50k^3+10k^2-35k-7)\div(5k-4)[/tex]

The divisor is (5k - 4)

Step 1 :

Divide the 1st term by the first term of the divisor.

[tex]\frac{50k^3}{5k}=10k^2[/tex]

The result is 10k^2

Step 2 :

Multiply the result to the divisor :

[tex]10k^2(5k-4)=50k^3-40k^2[/tex]

Step 3 :

Subtract the result from the polynomial :

[tex](50k^3+10k^2-35k-7)-(50k^3-40k^2)=50k^2-35k-7[/tex]

Now we have the polynomial :

[tex]50k^2-35k-7[/tex]

Repeat Step 1 :

[tex]\frac{50k^2}{5k}=10k[/tex]

The result is 10k

Repeat Step 2 :

[tex]10k(5k-4)=50k^2-40k[/tex]

Repeat Step 3 :

[tex](50k^2-35k-7)-(50k^2-40k)=5k-7[/tex]

Now we have the polynomial :

[tex]5k-7[/tex]

Repeat Step 1 :

[tex]\frac{5k}{5k}=1[/tex]

The result is 1

Repeat Step 2 :

[tex]1(5k-4)=5k-4[/tex]

Repeat Step 3 :

[tex](5k-7)-(5k-4)=-3[/tex]

Since -3 is a number, this will be the remainder.

Collect the bold results we had from above :

(10k^2 + 10k + 1) remainder -3

Note that the remainder can be expressed as remainder over divisor.

That will be :

[tex]\begin{gathered} 10k^2+10k+1+\frac{-3}{5k-4} \\ or \\ 10k^2+10k+1-\frac{3}{5k-4} \end{gathered}[/tex]