Given parameters:
[tex]\begin{gathered} P=Loan\text{ amount=\$3000} \\ r=rate\text{ intersest per period=9\%=}\frac{9}{100\times12}=\frac{0.09}{12}=0.0075 \\ n=n\nu mber\text{ of payments=30 months} \\ \end{gathered}[/tex]We can now apply the formula below to calculate the payment amount per period
[tex]A=P\frac{r(1+r)^n}{(1+r)^n-1}[/tex][tex]\begin{gathered} A=3000\times\frac{0.0075(1+0.0075)^{30}}{(1+0.0075)^{30}-1} \\ \\ A=3000\times\frac{0.0075(1.25127)}{(1.25127)-1}=\frac{28.1536}{0.25127}=112.05 \end{gathered}[/tex]Thus his monthly payment will be $112.05
But since we have to get the interest on the first month's pay,
The interest is
[tex]r\times P=0.0075\times3000=\text{ \$22.5}[/tex]Thus, $22.50 is the interest on the first month's payment