A number x is in a given interval (a,b) if it satisfies the following inequalities:
[tex]\begin{gathered} x>a, \\ xNotice that:1)
[tex]\begin{gathered} -\frac{9}{2}>-\infty, \\ -\frac{9}{2}=3\cdot(-\frac{3}{2})<-\frac{3}{2}\text{.} \end{gathered}[/tex]Therefore -9/2 is in the given interval.
2)
[tex]\begin{gathered} -1>-\infty, \\ -1=-\frac{2}{2}>-\frac{2}{2}-\frac{1}{2}=-\frac{3}{2}\text{.} \end{gathered}[/tex]Therefore -1 is not in the given interval.
3)
[tex]\begin{gathered} -\frac{3}{2}>-\infty, \\ -\frac{3}{2}=-\frac{3}{2}\text{.} \end{gathered}[/tex]Therefore -3/2 is not in the given interval.
4)
[tex]\begin{gathered} \frac{1}{2}>-\infty, \\ \frac{1}{2}>0>-\frac{3}{2}\text{.} \end{gathered}[/tex]Therefore 1/2 is not in the given interval.
Answer:
[tex]undefined[/tex]