Parabola in the form x^2=4pyIdentify Vertex, value of P, focus, and focal diameter.Identify endpoints of latus rectumWrite equations for the directrix and axis of symmetry X^2= -12y

Parabola in the form x24pyIdentify Vertex value of P focus and focal diameterIdentify endpoints of latus rectumWrite equations for the directrix and axis of sym class=

Respuesta :

Answer:

(a)

• The vertex of the parabola, (h,k)=(0,0)

,

• The value of p = -3

• The focus is at (0,-3).

,

• The focal diameter is 12

(b)The endpoints of latus rectum are (-1/12, -1/6) and (-1/12, 1/6).

(c)See Graph below

(d)

• I. The equation for the directrix is y=3.

,

• II. The axis of symmetry is at x=0.

Explanation:

Given the equation of the parabola:

[tex]x^2=-12y[/tex]

For an up-facing parabola with vertex at (h, k) and a focal length Ipl, the standard equation is:

[tex](x-h)^2=4p(y-k)[/tex]

Rewrite the equation in the given format:

[tex]\begin{gathered} (x-0)^2=4(-3)(y-0) \\ \implies(h,k)=(0,0) \\ \implies p=-3 \end{gathered}[/tex]

• The vertex of the parabola, (h,k)=(0,0)

,

• The value of p = -3

The focus is calculated using the formula:

[tex]\begin{gathered} (h,k+p) \\ \implies Focus=(0,0-3)=(0-3) \end{gathered}[/tex]

• The focus is at (0,-3).

Focal Diameter

Comparing the given equation with x²=4py, we have:

[tex]\begin{gathered} x^2=4ay \\ x^2=-12y \\ 4a=-12 \\ \implies a=-3 \\ \text{ Focal Diameter =4\mid a\mid=4\mid3\mid=12} \end{gathered}[/tex]

The focal diameter is 12

Part B (The endpoints of the latus rectum).

First, rewrite the equation in the standard form:

[tex]\begin{gathered} y=-\frac{1}{12}x^2 \\ \implies a=-\frac{1}{12} \end{gathered}[/tex]

The endpoints are:

[tex]\begin{gathered} (a,2a)=(-\frac{1}{12},-\frac{1}{6}) \\ (a,-2a)=(-\frac{1}{12},\frac{1}{6}) \end{gathered}[/tex]

The endpoints of latus rectum are (-1/12, -1/6) and (-1/12, 1/6).

Part C

The graph of the parabola is given below:

Part D

I. The equation for the directrix is of the form y=k-p.

[tex]\begin{gathered} y=0-(-3) \\ y=3 \end{gathered}[/tex]

The equation for the directrix is y=3.

II. The axis of symmetry is the x-value at the vertex.

The axis of symmetry is at x=0.

Ver imagen AdedejiZ654495