Respuesta :

Use the next trigonometric identities:

[tex]\begin{gathered} \sec (90º-\theta)=\frac{1}{\cos (90º-\theta)} \\ \\ \cos (90º-\theta)=\sin \theta \end{gathered}[/tex]

Then, the sec(90º - θ) is:

[tex]\sec (90º-\theta)=\frac{1}{\sin \theta}[/tex]

The sin(θ) is:

[tex]\sin \theta=\frac{opposite}{hypotenuse}=\frac{5}{13}[/tex]

Then:

[tex]\sec (90º-\theta)=\frac{1}{\frac{5}{13}}=\frac{13}{5}[/tex]

Then, the sec(90º - θ) is 13/5