Please help me with this problem I am trying to help my son to understand I have attached what I have helped him with so far just need to be sure i am correct:Solve the system of equations.13x−y=90y=x^2−x−42 Enter your answers in the boxes. ( __,__) and (__,__)

Please help me with this problem I am trying to help my son to understand I have attached what I have helped him with so far just need to be sure i am correctSo class=

Respuesta :

y=xTo solve the system of equations, follow the steps below.

Step 01: Substitute the value of y from equation 2 in equation 1.

In the second equation:

[tex]y=x^2-x-42[/tex]

In the first equation:

[tex]13x-y=90[/tex]

So, let's substitute y by x² - x - 42.

[tex]\begin{gathered} 13x-y=90 \\ 13x-(x^2-x-42)=90 \\ 13x-x^2+x+42=90 \end{gathered}[/tex]

Adding the like terms:

[tex]-x^2+14x+42=90[/tex]

Subtracting 90 from both sides:

[tex]\begin{gathered} -x^2+14x+42-90=90-90 \\ -x^2+14x-48=0 \end{gathered}[/tex]

Step 02: Use the quadratic formula to solve the equation.

For a quadratic equation ax² + bx + c = 0, the quadratic formula is:

[tex]\begin{gathered} x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} \\ \end{gathered}[/tex]

In this question, the equation is -1x² + 14x + -48 = 0, then, teh coeffitients are:

a = -1

b = 14

c = -48

Substituting the values and solving the equation:

[tex]\begin{gathered} x=\frac{-14\pm\sqrt{14^2-4*(-1)*(-48)}}{2*(-1)} \\ x=\frac{-14\pm\sqrt{196-192}}{-2} \\ x=\frac{-14\pm\sqrt{4}}{-2}=\frac{-14\pm2}{-2} \\ x_1=\frac{-14-2}{-2}=\frac{-16}{-2}=8 \\ x_2=\frac{-14+2}{-2}=\frac{-12}{-2}=6 \end{gathered}[/tex]

Step 03: Substitute the values of x in one equation and find y.

Knowing that:

[tex]y=x^2-x-42[/tex]

Let's substitute x by 6 and 8 and find the ordered pairs that are the solution of the system.

First, for x = 8:

[tex]\begin{gathered} y=8^2-8-42 \\ y=64-8-42 \\ y=14 \end{gathered}[/tex]

Second, for x = 6:

[tex]\begin{gathered} y=6^2-6-42 \\ y=36-48 \\ y=-12 \end{gathered}[/tex]

So, the solutions for the system of equations are (8, 14) and (6, -12).

Answer: (8, 14) and (6, -12).