There is a population of 2,363 bacteria in a colony. If the number of bacteria doubles every 157 minutes, what will the population be 314 minutes from now?

Respuesta :

9452

Explanation

an exponential function is given by:

[tex]\begin{gathered} y=a(b)^x \\ \text{where a is the initial amount} \\ b\text{ is the rate of change} \\ x\text{ is the time} \end{gathered}[/tex]

so

Step 1

Set the equations

a) initial population = 2363

time=0

replace

[tex]\begin{gathered} y=a(b)^x \\ 2363=a(b^0) \\ 2363=a\cdot1 \\ 2363=a \end{gathered}[/tex]

b) If the number of bacteria doubles every 157 minutes

[tex]\begin{gathered} (2363\cdot2)=2363(b^{157}) \\ (2363\cdot2)=2363(b^{157}) \\ 4726=2363b^{157} \\ \text{divide both sides by }2363 \\ \frac{4726}{2363}=\frac{2363b^{157}}{2363} \\ 2=b^{157} \\ 2^{(\frac{1}{157})}=(b^{157})^{\frac{1}{157}} \\ 1.00442471045\text{ =b} \end{gathered}[/tex]

so, the function is

[tex]y=2363(1.00442471045)^x[/tex]

Step 2

what will the population be 314 minutes from now?

Let

time=x =314

replace

[tex]\begin{gathered} y=2363(1.00442471045)^x \\ y=2363(1.00442471045)^{314} \\ y=2363\cdot4 \\ y=9452 \end{gathered}[/tex]

therefore, the answer is

9452

I hope this helps you