Filling in Table (decreasing)Dependent QuantityA Helicopter flying at 3509 feet begins its descent. Itdescends at a rate of 41 feet per minuteIndependent Quantity0Complete the missing part of the tables, and make afunction that describes the Helicopter's decent133222Your answer: Not there yet, keep working3140Share with Class

Filling in Table decreasingDependent QuantityA Helicopter flying at 3509 feet begins its descent Itdescends at a rate of 41 feet per minuteIndependent Quantity0 class=

Respuesta :

(0,3509)

(1,3468)

(3,3386)

(7,3222)

(9,3140)

h=3509-41x

Explanation

Step 1

as we can see, the independent quantity is the time , and the dependent quantity is the heigth because it depends on the time.

then when time = o, t=o

[tex]0\Rightarrow3509\text{ ft}[/tex]

after 1 minute the helicopter has descended 41 ft, then

when time = 1, t=1

[tex]\begin{gathered} heigth_1=3509-(1\cdot41) \\ heigth_1=3509-41 \\ heigth_1=3468 \\ (1,3468) \end{gathered}[/tex]

when t=3

[tex]\begin{gathered} heigth_3=3509-(3\cdot41) \\ heigth_3=3509-123 \\ heigth_3=3386 \end{gathered}[/tex]

when heigth=3222

[tex]\begin{gathered} \text{heigth}_x=3509-(x\cdot41) \\ 3222=3509-41x \\ \text{subtract 3509 in both sides} \\ 3222-3509=3509-41x-3509 \\ -287=-41x \\ \text{divide both sides by -41} \\ \frac{-287}{-41}=\frac{-41x}{-41} \\ 7=x \\ \text{hence}(7,3222) \end{gathered}[/tex]

when heigth=3140

[tex]\begin{gathered} \text{heigth}_x=3509-(x\cdot41) \\ \text{3140}=3509-41x \\ subtract\text{ 3509 in both sides} \\ \text{3140-3509}=3509-41x-3509 \\ -369=-41x \\ \text{divide both sides by -41} \\ \frac{-369}{-41}=\frac{-41x}{-41} \\ 9=x \\ x=9,\text{then} \\ (9,3140) \end{gathered}[/tex]

Step 2

now, the equation is

[tex]\begin{gathered} \text{Heigth}=3509-41x \\ h=3509-41x \\ \text{where} \\ h\text{ is the heigth in ft and t is the time in minutes} \end{gathered}[/tex]

I hope this helps you

Ver imagen NiyannaK368488