Answer:
1287
Explanation:
The number of distinct ways n objects can b selected from N total objects is given by
[tex]\frac{N!}{n!(N-n)!}[/tex]Now in our case, we have a total of 13 basketball players. N = 13 and 5 players to choose n = 5. Therefore, the above formula gives
[tex]\frac{13!}{5!(13-5)!}[/tex][tex]-\frac{13!}{5!8!}[/tex][tex]=\frac{13\cdot12\cdot11\cdot10\cdot9\cdot8\cdot7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot1}{5!\cdot8\cdot7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot1}[/tex][tex]=\frac{13\cdot12\cdot11\cdot10}{5!}[/tex][tex]=\frac{13\cdot12\cdot11\cdot10}{5\cdot4\cdot3\cdot2\cdot1}[/tex][tex]=1287[/tex]Hence, there are 1287 ways 5 different players can be selected from 13 players.