Respuesta :

Answer:

2x + h

Explanation:

Given the following functions

f(x) = 2x - 1

g(x) = x^2 - 2

We are to simplify the expressionn:

[tex]\frac{g(x+h)-g(x)}{h}[/tex]

Substitute the given functions into the expression and simplify

[tex]\begin{gathered} \frac{\lbrack(x+h)^2-2\rbrack-(x^2-2)}{h} \\ \frac{\lbrack\cancel{x^2}^{}+2xh+h^2-\cancel{2}-\cancel{x^2}^{}+\cancel{2}}{h} \\ \frac{2xh+h^2}{h} \end{gathered}[/tex]

Factor out "h" from the numerator to have:

[tex]\begin{gathered} \frac{\cancel{h}(2x+h)}{\cancel{h}} \\ 2x+h \end{gathered}[/tex]

Hence the simplified form of the expression is 2x + h