Respuesta :

Given:

P(s) = 29%

P(t) = 49%

For us to be able to determine P(S or T), we will be using the following formula:

[tex]\text{ P\lparen S or T\rparen = P\lparen S\rparen + P\lparen T\rparen}[/tex]

We get,

[tex]\text{ P\lparen S or T\rparen = 29\% + 49\% = 78\%}[/tex]

Therefore, the answer is CHOICE A: 78%