Step 1:
Write the expression
[tex](3x^5\text{ - }\frac{1}{9}y^3)^4[/tex]Step 2:
a)
[tex]\begin{gathered} (3x^5\text{ - }\frac{1}{9}y^3)^4 \\ =^4C_0(3x^5)^4(-\frac{1}{9}y^3)^0+^4C_1(3x^5)^3(-\frac{1}{9}y^3)^1+^4C_2(3x^5)^2(-\frac{1}{9}y^3)^2+ \\ +^4C_1(3x^5)^1(-\frac{1}{9}y^3)^3+^4C_0(3x^5_{})^0(-\frac{1}{9}y^3)^4 \end{gathered}[/tex]Step 3:
b) simplified terms of the expression
[tex]\begin{gathered} Note\colon \\ ^4C_0\text{ = 1} \\ ^4C_1\text{ = 4} \\ ^4C_2\text{ = 6} \\ ^4C_3\text{ = 4} \\ ^4C_4\text{ = 1} \end{gathered}[/tex]Next, substitute in the expression
[tex]\begin{gathered} =\text{ 1}\times81x^{20}\times1\text{ - 4}\times27x^{15}\text{ }\times\text{ }\frac{y^3}{9}\text{ + 6 }\times9x^{10}\times\frac{y^6}{81}\text{ - 4}\times3x^5\text{ }\times\text{ }\frac{y^9}{729} \\ +\text{ 1 }\times\text{ 1 }\times\frac{y^{12}}{6561}\text{ } \end{gathered}[/tex][tex]=81x^{20}-12x^{15}y^3\text{ + }\frac{2}{3}x^{10}y^6\text{ - }\frac{4}{243}x^5y^9\text{ + }\frac{1}{6561}y^{12}[/tex]