Respuesta :

Let us represent the premises given:

[tex]\begin{gathered} \text{Let } \\ A=\text{John is aardvark} \\ C=\text{Charles has a blue eye} \\ B=\text{Bob counts} \\ E=\text{Edna drives a truck} \\ D=\text{Dan edits} \end{gathered}[/tex]

Then

We can subdivide the argument into substatement

Statement 1: If John is an aardvark then either Charlene has blue eyes or Bob counts

[tex]A\Rightarrow(C\lor B)[/tex]

Statement 2: If Charlene has a blue eye then Edna drives a truck

[tex]C\Rightarrow E[/tex]

Statement 3: Either John is an aadvark or Dan edits

[tex]A\lor D[/tex]

Statement 4: Moly claims that either Bob counts or Edna drives a truck, but Moly is wrong

[tex]\begin{gathered} (B\lor E),\text{ But} \\ \sim(B\lor E) \end{gathered}[/tex]

Therefor D

[tex]\therefore D[/tex]

The above hypothesis and conclusion can be summarized below as;

Using a truth table calculator, the validity of the above arguments is shown below

Hence, we can conclude that the above is a valid argument.

Ver imagen ParkerI789385
Ver imagen ParkerI789385