Let us represent the premises given:
[tex]\begin{gathered} \text{Let } \\ A=\text{John is aardvark} \\ C=\text{Charles has a blue eye} \\ B=\text{Bob counts} \\ E=\text{Edna drives a truck} \\ D=\text{Dan edits} \end{gathered}[/tex]Then
We can subdivide the argument into substatement
Statement 1: If John is an aardvark then either Charlene has blue eyes or Bob counts
[tex]A\Rightarrow(C\lor B)[/tex]Statement 2: If Charlene has a blue eye then Edna drives a truck
[tex]C\Rightarrow E[/tex]Statement 3: Either John is an aadvark or Dan edits
[tex]A\lor D[/tex]Statement 4: Moly claims that either Bob counts or Edna drives a truck, but Moly is wrong
[tex]\begin{gathered} (B\lor E),\text{ But} \\ \sim(B\lor E) \end{gathered}[/tex]Therefor D
[tex]\therefore D[/tex]The above hypothesis and conclusion can be summarized below as;
Using a truth table calculator, the validity of the above arguments is shown below
Hence, we can conclude that the above is a valid argument.