Given:
The total number of seats, T=750.
Let x be the number of seats in a row and y be the number of rows.
It is given that the number of seats in a row is 5 less than the number of rows.
Hence, the number of seats in a row can be expressed as,
[tex]x=y-5\text{ ---(a)}[/tex]Now, expression for the total number of seats can be given by,
[tex]T=xy[/tex]Plug in x=y-5 and T=750 in the above equation and simplify.
[tex]\begin{gathered} 750=(y-5)y \\ 750=y^2-5y \\ y^2-5y-750=0\text{ ---(1)} \end{gathered}[/tex]The equation (1) is in the form of a quadratic equation of the form,
[tex]ay^2+by+c=0\text{ ---(2)}[/tex]Comparing equations (1) and (2), a=1, b=-5 and c=-750.
Now, using discriminant method, the solution of y can be expressed as,
[tex]\begin{gathered} y=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ y=\frac{-(-5)\pm\sqrt[]{(-5)^2-4\times1\times(-750)}}{2\times1} \\ y=\frac{5\pm\sqrt[]{25+3000}}{2\times1}\text{ } \\ y=\frac{5\pm\sqrt[]{3025}}{2} \\ y=\frac{5\pm55}{2}\text{ } \\ y=\frac{5+55}{2}\text{ or y=}\frac{5-55}{2} \\ y=\frac{60}{2}\text{ or y=}-\frac{50}{2} \\ y=30\text{ or y=-25} \end{gathered}[/tex]Since the number of rows cannot be negative, y=30.
Put y=30 in equation (a) to find x.
[tex]\begin{gathered} x=30-5 \\ x=25 \end{gathered}[/tex]Therefore, the number of seats in a row is 25.