The shorter leg of a 30°-60°-90° triangle measures 9sqrt3 inches. What is the length of the longer leg? OA. 27 inches OB. 27sqrt3 inches OC. 18 inches OD. 18sqrt3 inches

Respuesta :

We know that the proportion of the sides of a 30°-60°-90° triangle is:

The shorter leg is K, then:

[tex]K=9\sqrt[]{3}\text{ in}[/tex]

Using this result, we can calculate the length of the longer leg:

[tex]\begin{gathered} \sqrt[]{3}K=\sqrt[]{3}\cdot9\cdot\sqrt[]{3}=9\cdot3 \\ \Rightarrow=27\text{ in} \end{gathered}[/tex]

Ver imagen LyanV565720