Solution
- The way to solve the question is that we should substitute the values of x and y given into the formula given to us.
- The formula given to us is:
[tex]\begin{gathered} y-y_1=m(x-x_1) \\ where, \\ (x_1,y_1)\text{ are the points given to us} \\ m\text{ is the slope} \end{gathered}[/tex]- Thus, we can solve the question as follows:
Question 1:
[tex]\begin{gathered} m=5 \\ x_1=3,y_1=6 \\ \\ \text{ Thus, the equation is:} \\ y-6=5(x-3) \end{gathered}[/tex]Question 2:
[tex]\begin{gathered} m=\frac{2}{7} \\ x_1=-5,y_1=4 \\ \\ \text{ Thus, the equation is:} \\ y-4=\frac{2}{7}(x-(-6)) \\ \\ y-4=\frac{2}{7}(x+6) \end{gathered}[/tex]Question 3:
[tex]\begin{gathered} m=-\frac{3}{2} \\ x_1=-7,y_1=-10 \\ \\ \text{ Thus, the equation is:} \\ y-(-10)=-\frac{3}{2}(x-(-7)) \\ \\ y+10=-\frac{3}{2}(x+7) \end{gathered}[/tex]Final Answer
Question 1:
[tex]y-6=5(x-3)[/tex]Question 2:
[tex]y-4=\frac{2}{7}(x+6)[/tex]Question 3:
[tex]y+10=-\frac{3}{2}(x+7)[/tex]