Solution
[tex]F=p(1+\frac{r}{n})^{nt}[/tex]where:
F=future value = 45000
P=present value
r=rate (as a decimal) = 7%=0.07
n=number of compounding periods per year = 1
t=number of years = 6
[tex]\begin{gathered} F=p(1+\frac{r}{n})^{nt} \\ 45000=p(1+\frac{0.07}{1})^{1(6)} \\ 45000=P(1+0.07)^6 \end{gathered}[/tex][tex]\begin{gathered} 45000=P(1.07)^6 \\ 45000=P(1.50073) \\ P=\frac{45000}{1.50073} \\ P=29985.4 \end{gathered}[/tex]Therefore the present value deposited today = $29,985.40