Respuesta :

A)

[tex]\begin{gathered} c=17.159 \\ A=4.747\text{\operatorname{\degree}} \\ B=85.253\operatorname{\degree} \end{gathered}[/tex]

Explanation

Explanation

Step 1

c) to find the measure of the hypotenuse we can use the Pythagorean theorem, it states that the sum of the squares on the legs of a right triangle is equal to the square on the hypotenuse (the side opposite the right angle)

[tex]a^2+b^2=c^2[/tex]

Step 1

a) Let

[tex]\begin{gathered} a=1.42 \\ b=17.1 \end{gathered}[/tex]

b) now, replace and solve for c

[tex]\begin{gathered} a^2+b^2=c^2 \\ 1.42^2+17.1^2=c^2 \\ 294.4264=c^2 \\ c=\sqrt{294.4264} \\ c=17.15885 \\ rounded \\ c=17.159 \end{gathered}[/tex]

Step 2

angle A

to solve for angle A we can use tan function, so

[tex]tan\theta=\frac{opposite\text{ side}}{adjacent\text{ side}}[/tex]

replace

[tex]\begin{gathered} tan\text{ A=}\frac{a}{b} \\ tanA=\frac{1.42}{17.1} \\ A=\tan^{-1}(\frac{1.42}{17.1}) \\ A=4.747\text{ \degree} \end{gathered}[/tex]

Step 3

for angle B we can use tan function

let

[tex]\begin{gathered} opposit\text{ side=b} \\ adjacent\text{ side=a} \end{gathered}[/tex]

replace and solve for angle B

[tex]\begin{gathered} tan\text{ B=}\frac{b}{a} \\ tanB=\frac{17.1}{1.42} \\ B=\tan^{-1}(\frac{17.1}{1.42}) \\ B=85.252\text{ \degree} \\ \end{gathered}[/tex]

I hope this helps you

Ver imagen DamarcoE135787