We have the expression:
[tex]\frac{1}{x - 1}=\frac{5}{x - 10}[/tex]When we have rational functions, where the denominator is a function of x, we have a restriction for the domain for any value of x that makes the denominator equal to 0.
That is because if the denominator is 0, then we have a function f(x) that is a division by zero and is undefined.
If we have a value that makes f(x) to be undefined, then this value of x does not belong to the domain of f(x).
Expression:
[tex]\begin{gathered} \frac{1}{x-1}=\frac{5}{x-10} \\ \frac{x-1}{1}=\frac{x-10}{5} \\ x-1=\frac{x}{5}-\frac{10}{5} \\ x-1=\frac{1}{5}x-2 \\ x-\frac{1}{5}x=-2+1 \\ \frac{4}{5}x=-1 \\ x=-1\cdot\frac{5}{4} \\ x=-\frac{5}{4} \end{gathered}[/tex]Answer: There is no restriction for x in the expression.