Respuesta :

In any right triangle with acute angles x and y, then

The sum of x and y is 90 degrees

[tex]\begin{gathered} \sin x=\cos y \\ \cos x=\sin y \\ x+y=90^{\circ} \end{gathered}[/tex]

Then for part (1)

Since triangle XYZ is a right angle at Z

Then

[tex]X+Y=90^{\circ}[/tex]

Then X and Y are complementary angles

Part (2)

sin X = opposite/hypotenuse

[tex]\sin X=\frac{x}{z}[/tex]

sin Y = opposite/hypotenuse

[tex]\sin Y=\frac{y}{z}[/tex]

cos X = adjacent/hypotenuse

[tex]\cos X=\frac{y}{z}[/tex]

cos Y = adjacent/hypotenuse

[tex]\cos Y=\frac{x}{z}[/tex]

Part (3)

[tex]\begin{gathered} \sin X=\cos Y \\ \cos X=\sin Y \end{gathered}[/tex]

Part (4)

Since sin = cos, then

The sum of the 2 angles must be 90

One of them is 23 degrees, then the other must be

[tex]90-23=67[/tex]

The answer is

[tex]\cos (23)=\sin (67)[/tex]