Respuesta :

Answer: y = -2x - 4

The equation of the line given is

[tex]\frac{1}{2}x\text{ + 1}[/tex]

The slope - intercept form of equation is written as

y = mx + b

Where m = slope and b = intercept

From the above equation

m = 1/2

For a perpendicular line

[tex]\begin{gathered} For\text{ perpendicular line} \\ m1\text{ x m2 = -1} \\ m1\text{ = }\frac{1}{2} \\ \text{Therefore,} \\ \frac{1}{2}\text{ x m2 = -1} \\ \text{Make m2 the subject of the formula} \\ m2\text{ = }\frac{-1}{\frac{1}{2}} \\ m2\text{ = -1 x }\frac{2}{1} \\ m2\text{ = -2} \end{gathered}[/tex]

Since m2 = -2

Hence, the perpendicular equation can be calculated

(y - y1) = m(x - x1)

The given point is ( -4, 4)

x1 = -4 and y1 = 4, and m = -2

(y - 4) = -2(x - (-4)

(y - 4) = -2(x + 4)

Open the parenthesis

y - 4 = -2x - 2*4

y - 4 = -2x - 8

y = -2x -8 + 4

y = -2x - 4