Respuesta :

Solution:

Given the equation:

[tex]y=6\sqrt{x+14}\text{ ----- equation 1}[/tex]

Equation 1 can be expressed in a simpler manner to be

[tex]y=6(x+14)^{\frac{1}{2\text{ }}}----\text{ equation 2}[/tex]

To find

[tex]\frac{dy}{dx}[/tex]

we take the derivative of y with respect to x.

From the product rule,

[tex]\frac{d(UV)}{dx}=U\frac{dV}{dx}+V\frac{dU}{dx}[/tex]

In this case,

[tex]\begin{gathered} U=6 \\ V=(x+14)^{\frac{1}{2}} \end{gathered}[/tex]

thus,

[tex]\frac{d(6(x+14)^{\frac{1}{2}})}{dx}=6\frac{d((x+14)^{\frac{1}{2}})}{dx}+(x+14)^{\frac{1}{2}}\frac{d(6)}{dx}[/tex][tex]\begin{gathered} \frac{d((x+14)^{\frac{1}{2}})}{dx}=\frac{1}{2}(x+14)^{-\frac{1}{2}}\times1 \\ =\frac{1}{2}(x+14)^{-\frac{1}{2}} \\ \frac{d(6)}{dx}=0 \\ The\text{ derivative of a constant gives zero} \end{gathered}[/tex]

Substituting these parameters into the product rule equation, we have

[tex]\begin{gathered} \frac{d(6(x+14)^{\frac{1}{2}})}{dx}=6(\frac{1}{2}(x+14)^{-\frac{1}{2}})+(x+14)^{\frac{1}{2}}(0) \\ =3(x+14)^{-\frac{1}{2}}+0 \\ thus, \\ \frac{d(6\sqrt{x+14})}{dx}=\frac{3}{\sqrt{x+14}} \end{gathered}[/tex]

Hence, the derivative is expressed as

[tex]\frac{3}{\sqrt{x+14}}[/tex]