Respuesta :

The formula for the average rate of change is given as:

[tex]\frac{\Delta y}{\Delta x}=\frac{f(x_2)-f(x_1)}{x_2-x_1}[/tex]

From the interval provided, take

[tex]\begin{gathered} x_1=-9 \\ x_2=-8 \end{gathered}[/tex]

Comparing on the graph,

[tex]\begin{gathered} f(x_1)=-80 \\ f(x_2)=-20 \end{gathered}[/tex]

Inputting the values into the equation for average rate of change,

[tex]\begin{gathered} \frac{\Delta y}{\Delta x}=\frac{-20-(-80)}{-8-(-9)}=\frac{-20+80}{-8+9}=\frac{60}{1} \\ \frac{\Delta y}{\Delta x}=60 \end{gathered}[/tex]

Therefore, the average rate of change for the interval -9 ≤ x ≤ -8 is 60.