Answer:
y=17.01x+215.96
Explanation:
First, we determine the slope, a, of the best-fitting line using the formula below:
[tex]\begin{gathered} a=r(\frac{s_y}{s_x}) \\ =0.63(\frac{108}{4}) \\ \implies a=17.01 \end{gathered}[/tex]Next, we find the y-intercept of a regression line:
[tex]\begin{gathered} b=\bar{y}-ax \\ =284-17.01(4) \\ \implies b=215.96 \end{gathered}[/tex]Therefore, the equation of the regression line is:
[tex]\begin{gathered} \hat{y}=ax+b \\ \hat{y}=17.01x+215.96 \end{gathered}[/tex]