Respuesta :

We are given the following equation:

[tex]cot^2(\frac{\pi}{2}x)=3[/tex]

To solve for "x" we will take the square root to both sides:

[tex]cot(\frac{\pi}{2}x)=\sqrt{3}[/tex]

Now, we take the inverse function of cotangent:

[tex]\frac{\pi}{2}x=cot^{-1}\sqrt{2}[/tex]

Solving the operations:

[tex]\frac{\pi}{2}x=\frac{\pi}{6}[/tex]

Now, we can cancel out the pi:

[tex]\frac{1}{2}x=\frac{1}{6}[/tex]

Now, we multiply both sides by 2:

[tex]x=\frac{2}{6}[/tex]

Simplifying:

[tex]x=\frac{1}{3}[/tex]

Therefore, the value of "x" is 1/3