We have to find m∠BQV.
As QV is a tangent line, we can relate ∠BQV with the minor arc QB as:
[tex]\begin{gathered} m\angle BQV=\frac{1}{2}m\overarc{BQ}=\frac{1}{2}(360\degree-m\overarc{BFQ})=\frac{1}{2}(360\degree-252\degree) \\ m\angle BQV=\frac{1}{2}(108\degree) \\ m\angle BQV=54\degree \end{gathered}[/tex]Answer: m∠BQV = 54°