To solve this question, follow the steps below.
Step 01: Factor out "x".
Given:
[tex]x^3-4x=0[/tex]Since both terms have "x", you can factor out "x":
[tex]x*(x^2-4)=0[/tex]Step 02: Find the values of x.
In order to the result be zero, or x = 0, or (x² - 4) = 0.
First, do x = 0.
[tex]x=0[/tex]Second, do (x² - 4) = 0.
[tex]x^2-4=0[/tex]To find x, add 4 to both sides of the equation.
[tex]\begin{gathered} x^2-4+4=0+4 \\ x^2=4 \end{gathered}[/tex]And take the root of both sides.
[tex]\begin{gathered} \sqrt{x^2}=\pm\sqrt{4} \\ x=\pm2 \end{gathered}[/tex]Answer: x = -2, 0, 2.