Answer:
Applying the distributive property we get:
[tex]\begin{gathered} 2.5\cdot4-2.5x+16=72-5\cdot2x-5\cdot20, \\ 10-2.5x+16=72-10x-100. \end{gathered}[/tex]Adding like terms we get:
[tex]26-2.5x=-28-10x\text{.}[/tex]Adding 10x to the above equation we get:
[tex]\begin{gathered} 26-2.5x+10x=-28-10x+10x, \\ 26+7.5x=-28. \end{gathered}[/tex]Subtracting 26 from the above equation we get:
[tex]\begin{gathered} 26+7.5x-26=-28-26, \\ 7.5x=-54 \end{gathered}[/tex]Finally, dividing the above equation by 7.5 we get:
[tex]\begin{gathered} \frac{7.5x}{7.5}=\frac{-54}{7.5}, \\ x=-7.2. \end{gathered}[/tex]