Respuesta :

STEP - BY - STEP EXPLANATION

What to find?

The number of ways to get 10 tails.

Given:

Number of time the coin is tosses(n) =25

and r=10 ; 10 tails (getting tails success and heads failure).

Since, the number of tosses is 25 and we want to get 10 tails, then we can solve this using combination.

Step 1

Recall the combination formula.

[tex]nC_r=\frac{n!}{(n-r)!r!}[/tex]

n= 25 r=10

Step 2

Substitute the values into the formula and simplify.

[tex]25C_{10}=\frac{25!}{(25-10)!10!}[/tex][tex]=\frac{25!}{15!\times10!}[/tex][tex]=\frac{25\times24\times23\times22\times21\times20\times19\times18\times17\times16\times15!}{15!\times10!}[/tex][tex]=\frac{25\times24\times23\times22\times21\times19\times18\times17\times16}{10\times9\times8\times7\times6\times5\times4\times3\times2}[/tex][tex]=3268760[/tex]

ANSWER

3268760 ways.