To find the midpoint M of the line segment from A to B, we can use the following formula:
[tex]\begin{gathered} M(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}) \\ \text{ Where A and B have coordinates} \\ A(x_1,y_2) \\ B(y_1,y_2) \end{gathered}[/tex]So, we have:
[tex]\begin{gathered} A(0,0) \\ B(1,2) \\ M(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}) \\ M(\frac{0+1}{2},\frac{0+2}{2}) \\ M(\frac{1}{2},\frac{2}{2}) \\ \boldsymbol{M(0.5,1)} \end{gathered}[/tex]Therefore, the midpoint of the leg AB is (0.5,1).