The expression is given as,
[tex]fg^{-8}h^{84}\cdot f^0g^{-80}h^{86}[/tex]Consider the law of exponents,
[tex]x^m\cdot x^n=x^{m+n}[/tex]Use the above law to simplify the given expression.
Take the terms with same bases together,
[tex](f\cdot f^0)\cdot(g^{-8}\cdot g^{-80})\cdot(h^{84}\cdot h^{86})[/tex]Apply the law,
[tex]\begin{gathered} =(f^{1+0})\cdot(g^{-8+(-80)_{}})\cdot(h^{84+86}) \\ =(f^1)\cdot(g^{-88_{}})\cdot(h^{170}) \\ =fg^{-88}h^{170} \end{gathered}[/tex]Thus, the simplified form of the given expression (without any denominator is obtained as,
[tex]fg^{-88}h^{170}[/tex]