Let be "x" the height in feet of the tree.
First, we need to make the conversion from inches to feet. Since:
[tex]1\text{ ft=12 in}[/tex]We have:
[tex]\begin{gathered} (3\text{ in)(}\frac{1\text{ ft}}{12\text{ in}})=0.25\text{ ft} \\ \\ (6\text{ in)(}\frac{1\text{ ft}}{12\text{ in}})=0.5\text{ ft} \end{gathered}[/tex]Then your height is:
[tex]5\text{ ft+0.25 ft= 5.25 ft}[/tex]And your shadow is:
[tex]10\text{ f+ 0.5 ft=10.5 ft}[/tex]Knowing that, we can set up the following proportion:
[tex]\frac{5.25}{10.5}=\frac{x}{52}[/tex]Solving for "x", we get:
[tex]\begin{gathered} (\frac{5.25}{10.5})(52)=x \\ x=\text{ 26} \end{gathered}[/tex]Therefore, the height of the tree is about 26 feet.