Given:
Two polynomials represent all the inventory of the stores
[tex]\begin{gathered} A\colon\frac{1}{3}g^2+\frac{5}{2} \\ B\colon2g^2-\frac{3}{4}g+\frac{3}{4} \end{gathered}[/tex]To find the expression that represents the combined inventory of the two stores, we will add (A) and (B)
So, the expression will be:
[tex]\begin{gathered} (\frac{1}{3}g^2+2g^2)+(-\frac{3}{4}g)+(\frac{5}{2}+\frac{3}{4}) \\ \\ =\frac{7}{3}g^2-\frac{3}{4}g+\frac{13}{4} \end{gathered}[/tex]So , the answer will be:
[tex]\frac{7}{3}g^2-\frac{3}{4}g+\frac{13}{4}[/tex]