Answer:
The solution to the system of equations is;
[tex]\begin{gathered} x=1 \\ y=4 \end{gathered}[/tex]Explanation:
Given the system of equation;
[tex]\begin{gathered} y=5x-1\text{ ---------1} \\ 6x+2y=14\text{ ----------2} \end{gathered}[/tex]Let us solve by substitution;
substitute equation 1 to 2;
[tex]\begin{gathered} 6x+2(5x-1)=14 \\ 6x+10x-2=14 \\ 16x-2=14 \\ 16x=14+2 \\ 16x=16 \\ x=\frac{16}{16} \\ x=1 \end{gathered}[/tex]since we have the value of x, let us substitute into equation 1 to get the value of y;
[tex]\begin{gathered} y=5x-1 \\ y=5(1)-1 \\ y=4 \end{gathered}[/tex]Therefore, the solution to the system of equations is;
[tex]\begin{gathered} x=1 \\ y=4 \end{gathered}[/tex]