SOLUTION
Given the question in the question tab, the following are the solution steps to answer the question
STEP 1: Write the rate at which the construction crew built the road
[tex]1\text{ day = }3\frac{1}{5}km[/tex]STEP 2: Calculate the total length of road they built
[tex]\begin{gathered} 1\text{ day = }3\frac{1}{5} \\ 2\frac{3}{8}\text{days = x length of road} \\ \text{Converting the mixed fraction to improper fraction, we have:} \\ 3\frac{1}{5}=\frac{(3\times5)+1}{5}=\frac{15+1}{5}=\frac{16}{5} \\ 2\frac{3}{8}=\frac{(8\times2)+3}{8}=\frac{16+3}{8}=\frac{19}{8} \\ \\ \text{ Rewriting the equation, we have:} \\ 1\text{day}=\frac{16}{5}km \\ \frac{19}{8}=x\text{ km} \\ By\text{ cross multiplying, we have;} \\ x\times1=\frac{16}{5}\times\frac{19}{8} \\ x=\frac{304}{40}km=\frac{38}{5} \\ \text{Converting to mixed fraction, we have:} \\ 7\frac{3}{5}km \end{gathered}[/tex]Hence, the total length of road built by the construction crew in 2 3/8 days is:
[tex]7\frac{3}{5}km[/tex]