A conservation organization releases 120 animals of endangered species into a game preserve. The organization believes that the growth of the herd will follow the logistic curve p(t)= 1200/1+9e^ -0.156^t

Respuesta :

Given

[tex]P(t)=\frac{1200}{1+9e^{-0.156t}}[/tex]

Find

Population after 5 months.

when will population reach 500.

Explanation

We have given

[tex]P(t)=\frac{1200}{1+9e^{-0.156t}}[/tex]

so population after 5 months.

that is t =5

[tex]\begin{gathered} P(5)=\frac{1200}{1+9e^{-0.156(5)}} \\ \\ P(5)=\frac{1,200}{1+9e^{-0.78}} \\ \\ P(5)=\frac{1,200}{1+9\times0.458406} \\ \\ P(5)=\frac{1,200}{5.125654} \\ \\ P(5)=234.116466 \end{gathered}[/tex]

Population reach 500

[tex]\begin{gathered} 500=\frac{1200}{1+9e^{-0.156t}} \\ 1+9e^{-0.156t}=2.4 \\ 9e^{-0.156t}=1.4 \\ t=\frac{\ln(\frac{1.4}{9})}{-0.156} \\ t=\frac{\ln(0.156)}{-0.156} \\ t=11.90 \end{gathered}[/tex]

t = 11.90 months

Final Answer

a) P(5) = 234

b) t = 11.90 months